Integration Times

Bill Erickson

Let the sky noise coupled into the balun (after mismatch losses) be Ts and the active balun noise level be Tb. Define sky noise dominance to be:

$$D = Ts/Tb$$

The ratio of the total system noise, Ts + Tb, to the noise in an ideal system with a noiseless balun is:

$$R = (Ts + Tb)/Ts$$

To obtain the same output fluctuation level in a real system compared with an ideal system one must increase the integration time by a factor of R².

The results are:

D	R	R^2	
0 dB	2.0	4.0	
1 dB	1.79	3.22	
2 dB	1.63	2.66	
3 dB	1.5	2.25	
6 dB	1.25	1.57	
10 dB	1.1	1.21	
13 dB	1.05	1.10	
16 dB	1.03	1.05	
20 dB	1.01	1.02	

One sees that for D=6 dB, integration times must be increased by 57%; this seems to me to be practical goal. D=10 dB with a 21% increase is obviously better. Observations are possible with D=0 dB or even D=-3dB for strong sources (like the active Sun) where sensitivity is no problem. Even sensitive observations would be possible in these cases, just very slow.